EARLY SUPPLEMENTATION OF NON-OBESE DIABETIC MICE WITH OLIGOSACCHARIDES ISOLATED FROM HUMAN MILK REDUCES SPONTANEOUS AUTOIMMUNE DIABETES DEVELOPMENT LATER IN LIFE

A.P. Vos^{1,2}, A. Nato^{1,2}, J. Bastiaans¹, A. Leusink-Muis^{2,3}, B. Stahl¹, J. Garssen^{1,2}, G. Folkerts^{2,3}

- 1. Nutricia Research, Utrecht, the Netherlands
- 2. Utrecht Institute for Pharmaceutical Sciences, Utrecht, the Netherlands
- 3. Curax BV, Houten, the Netherlands

HUMAN MILK OLIGOSACCHARIDES: EFFECTS ON THE IMMUNE SYSTEM

Breastfeeding is associated with immunological benefits (less allergies, less infections)

Human milk oligosaccharides (HMOS) can modulate the immune system directly or indirectly

→ Research questions:

- → Can HMOS affect the development of autoimmune disease?
- → Can early exposure to HMOS affect disease in later life (programming)?

EVERY BABY NEEDS A SUGAR MAMA

L. Bode, Glycobiology 22(9):1147–1162, 2012

EXPERIMENTAL SETUP

Non-obese diabetic (NOD/ShiLtJ) mice: spontaneous autoimmune (type I diabetes) development, sensitive to dietary influences

HMOS: isolated from a pooled mature human milk sample and reduced in lactose (84% HMOS, 16% lactose; method: Geisser et al, J Chromatogr A, 2005)

- Comparison: AIN-93M control diet versus AIN-93M diet + 1% (w/w) HMOS
- Primary readout: urine glucose detection (>300 mg/dL)
- Secondary readouts: blood glucose, pancreas histology, flow cytometric analysis of splenocytes

EARLY HMOS DIETARY EXPOSURE REDUCES DIABETES DEVELOPMENT

Diabetes development

food intake & body weight were similar between experimental groups

Endpoint measurements

Urine glucose score results

Blood glucose levels

REDUCED ACTIVATION OF SPLEEN CD4 T-CELLS AND REGULATORY T-CELLS IN HMOS GROUP

Reduced T-regulatory cells

Reduced activated T-helper cells

No increase in Tregs was observed, in contrast to effects of breastfeeding on T1D in BB rats (Brugman et al. 2009, Diabetes Metab Res Rev, 25(4):380-7)

Related to decreased overall immune activation marker expression?

No differences were observed in % of Th1, Th2 or Th17 cells between dietary groups

SCORING METHOD TO QUANTIFY PANCREAS INFLAMMATORY ISLET INFILTRATION

Each islet of each section was scored by this system:

0 = No Insulitis

1 = Peri-Insulitis

2 = Insulitis affecting less than 50% of the islet area

3 = Insulitis affecting more than 50% of the islet area

4 = Complete Insulitis

Average of 46 islets per animal were analyzed

No insulitis

Peri-insulitis

Insulitis >50%

Complete insulitis

DECREASED INSULITIS IN HMOS GROUP

Most prevalent insulitis score per animal

Normalized score (range 0-4)

Insulitis scores showed a partial correlation with urine glucose values, but many normoglycemic animals showed variable levels of insulitis

CONCLUSIONS

Low level supplementation with the complex mixture¹ of HMOS in early life reduces autoimmune diabetes development in NOD mice later in life

Urine & blood glucose levels

Pancreas inflammation

Analysis of systemic immune cell populations revealed lower CD4 T-cell activation levels and lower percentages of Tregs

Lower Treg levels may be related to lower immune activation

HMOS in early life modulate immune responses in later life: an example of immunological programming

B. Stahl et al, Anal Biochem 223(2):218-26, 1994

ACKNOWLEDGEMENTS

Betty van Esch

Gemma Dingjan

Mara Diks

