Note: for non-commercial purposes only

Centre de recherche en Épidémiologie et Santé des Populations

Institut national de la santé et de la recherche médicale Comprendre le monde, construire l'avenir®

Cord blood biomarkers of the fetal metabolism: associations with postnatal growth and later metabolism

N Regnault¹, J Botton¹, K Milcent¹, A Forhan¹, MW Gillman², B Heude¹, MA Charles¹

 ¹ INSERM Center for Research in Epidemiology and Population Health Team 10: Epidemiology of diabetes and obesity over the lifecourse
 ² Obesity Prevention Program, Harvard Medical School

nolwenn.regnault@inserm.fr

METABOLIC PROGRAMMING

A MECANISTIC APPROACH

Postulated model for path analysis

The EDEN STUDY

- Pre-birth cohort of mothers and children in 2 French regions
- Follow-up from 2nd trimester of pregnancy up to 8 years
- Study of the pre and postnatal determinants of child development and health

PRENATAL MODEL

Étude des Determinants pré et post natals du développement et de la santé de l'ENfant

Regnault et al, Diabetes, 2011

A SEX SPECIFIC POSTNATAL EFFECT?

Regnault et al, Diabetes, 2011

WHY DO WE NEED GROWTH MODELS?

- Early life factors associated with
 - attained weight, height, measures of adiposity
 - <u>at a given age</u>
- How children got there: as/more important than attained weight, BMI....?
- Growth trajectories in early life predict adult chronic diseases
 (obesity, type 2 diabetes...) (Eriksson et al, 2011)

- Longitudinal study with repeated measures
- Weight and length/height measures available from:
 in-person research visits
 - clinical measures (health booklet/ medical records)
 - all at different ages

WHY DO WE NEED GROWTH MODELS?

INPUT __

GROWTH MODELING

use all available data, including clinical measurements

> Dynamics of growth Critical windows

→ OUTPUT

obtain values of:

- weight, height
- growth velocities
- accelerations
- BMI
- for all the children
- at selected timepoints

GROWTH MODELS

- Mixed models
- The researcher has to provide a model

GROWTH MODELING IN 2 COHORTS

Project Viva: a study of health for the next generation Massachusetts-based pre-birth cohort Recruited more than 2000 women in early pregnancy Ongoing follow-up of mothers and child

GROWTH MODELING IN 2 COHORTS

Proceedings of a workshop on modeling of growth trajectories

Botton et al, **Postnatal weight and height** growth modelling and prediction of body mass index as a function of time for the study of growth determinants

Regnault et al, *Comparative study of four growth models applied to weight and height growth data in a cohort of US children from birth to 9 years*

GROWTH MODELING IN 2 COHORTS

• The Jenss model (Jenss and Bayley, 1937)

$$\hat{y}_{ij} = e^{A_i} + e^{-B_i} \cdot t_{ij} + e^{C_i} \cdot (1 - e^{-e^{-D_i} \cdot t_{ij}})$$

where y is observed weight (kg) or length (cm), t is age (in months)

growth from birth to 8 years

- The modified Jenss model (Botton et al, AJCN, 2008).
 - differs from the original Jenss model by the addition of a quadratic parameter (E* t 2)
 - growth from 0 to 12 y

INDIVIDUAL GROWTH TRAJECTORIES

FETAL INSULIN AND WEIGHT IN 1st YEAR

Ajusted for center, gestationnal age, maternal glycemia and pre-pregnancy BMI, IGF-I

15

Similar findings recently published by Brunner et al, Diabetic Med, 2013

AND LATER IN CHILDHOOD ?...

Regnault N, in preparation

LEPTINE AND ANTHROPOMETRICS AT BIRTH

0.0

40 41 42 43 44

45

Milcent K, unpublished

Birth length

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

LEPTINE AND ANTHROPOMETRICS IN THE 1ST Y

Ong KK, JCEM, 1999

Weight gain 0-4 months

Figure 1. Weight gain 0-4months against cord leptin levels in males (= and solid line, $B = -0.37 \pm 0.12$, p<0.005) and females (\Box and broken line; $B = -0.28 \pm 0.14$, p <0.05).

EDEN Study, N=284 Association of fetal leptine and height growth velocity at 3 months in boys (blue, r=- 0,16, p<0,05 and in girls (red, r=-0,25, p<0,01)

Milcent K, unpublished

Height growth velocity at 3 months

AND LATER IN CHILDHOOD ?...

Project Viva

TABLE 3 Multivariable associations of leptin concentrations with adiposity measures at ages 3 and 7 years, and with change in BMI *z*-score from 3 to 7 years. Estimates show association for highest versus lowest quintiles of plasma leptin concentration^a

	Exposure Difference in means: Q5 vs. Q1 (95% CI)		
	Maternal leptin	Cord leptin	Child age 3 leptin
Age 3 outcomes			
BMI z	-0.5 (-0.7, -0.2)	-0.5 (-0.8, -0.2)	-
Waist circumference (cm)	-1.3 (-2.1, -0.5)	-1.4 (-2.3, -0.4)	_
$SS + TR^{b}$ (mm)	-0.8 (-1.8, 0.3)	-1.4 (-2.7, -0.1)	-
Age 7 outcomes			
BMI z	-0.4 (-0.6, -0.1)	-0.4 (-0.7, -0.1)	0.2 (-0.0, 0.4)
Waist circumference (cm)	-2.1 (-3.8, -0.4)	0.1 (-2.0, 2.1)	2.0 (0.6, 3.5)
$SS + TR^{b}$ (mm)	0.2 (-2.1, 2.5)	1.1 (-1.5, 3.7)	4.5 (2.5, 6.4)
DXA fat mass (kg)	0.2 (-0.7, 1.0)	0.3 (-0.7, 1.3)	1.6 (0.9, 2.3)
Change between ages 3 and 7			
BMI z	0.1 (-0.1, 0.3)	0.1 (-0.2, 0.4)	0.2 (-0.0, 0.4)
Waist circumferences (cm)	-1.1 (-2.7, 0.4)	0.3 (-1.5, 2.1)	2.3 (0.9, 3.7)
$SS + TR^{b}$ (mm)	-0.0 (-1.9, 1.9)	0.7 (-1.6, 3.0)	3.7 (1.8, 5.6)

^aData from maternal-child pairs in Project Viva. Covariates are the same as in Model 3 from Table 2. Waist circumference, change in waist circumference, SS+TR, change in SS+TR, and DXA models additionally adjusted for child height. Change outcomes adjusted for age at both 3 and 7 year visits. Bold indicates p < 0.05. ^bSS + TR: sum of subscapular and triceps skinfold thicknesses.

Boeke et al, Obesity, 2013

BIOMARKERS IN CORD BLOOD

- Potential for prediction of later growth
- Slower growth in infancy associated with adult outcomes
- Sex-specific effects
 - Higher cord insulin and leptin in girls
 - 'Gender Insulin Hypothesis' (Wilkin, Int J Obes, 2006)
 - Girls may be more resistant to the growth promoting effect of insulin in the postnatal period
 - Hormonal mecanisms: postnatal testosterone peak i n boys
 - Sex specific epigenetics in brain and placenta (McCarthy, J Neurosci, 2009)