INFLUENCE OF EARLY NUTRITION ON METABOLIC PROCESSES

Investigated by targeted LC/MS based metabolomics
Christian Hellmuth
02/04/2014
TABLE OF CONTENT

1. METABOLOMICS

2. EUROPEAN CHILDHOOD OBESITY PROJECT
METABOLOMICS

FUNCTIONAL INSIGHTS IN MOLECULAR CHANGES

Genotype → Transcriptomics → Proteomics → Genomics

Phenotype

Metabolomics
METABOLOMICS?

- Determination of Metabolites

- Metabolites
 - Small molecules (<1000 Dalton)
 - Substrates, intermediates and products of biological processes

- Metabolome
 - Complete set of metabolites found within a biological sample

- Understanding of biochemical changes & differences
Influence of Early Nutrition on Metabolic processes – Christian Hellmuth

BENEFITS OF THE NEXT „OMICS” FIELD

- Dynamic response of living systems to stimuli and genetics¹

- Information on what is actual happening²

BENEFITS OF THE NEXT „OMICS“ THING

- Insights into underlying molecular pathology\(^1\)
- Definition of biomarkers in biofluids\(^1\)
- Is the interplay between functional subunits changed by nutritional changes?
- Can we gain new functional insights?

\(^1\) Heazell, Dune et al. Placenta. 2011 Mar;32 Suppl 2:S119-24
HOW TO ANALYSE THE METABOLOME?

First: THINK
BEFORE I DETERMINE THE METABOLOME!

- What do I want to know?
 - Background of my clinical trial
 - Hypothesis for metabolic differences/response

- What do I have?
 - Sample number, material, volume
 - Sampling conditions

- Which of the possible analytical strategies are available?
 - Targeted vs. untargeted metabolomics
 - Analytical equipment – GC, LC, MS, NMR
EARLY PROGRAMMING EFFECTS REFLECTED IN THE METABOLOME

CHRISTIAN HELLMUTH, FRANCA KIRCHBERG, PETER RZEHAK, MARTINA WEBER, ANNICK XHONNEUX, NATALIA FERRE, ELVIRA VERDUCI, PIOTR SOCHA AND BERTHOLD KOLETZKO FOR THE EUROPEAN CHILDHOOD OBESITY TRIAL STUDY GROUP
Influence of Early Nutrition on Metabolic processes – Christian Hellmuth

EARLY PROGRAMMING

Genotype

Conception

- Maternal nutrition
- Maternal stress
- Placental development
- Placental transfer

Birth

- Infant nutrition

6 Month

Later Life

- Obesity
- Diabetes
- CVD
- Allergy
- Cognition
- Behaviour
- ...

Environment and Nutrition

Programmings

Metabolomics

KLINIKUM DER UNIVERSITÄT MÜNCHEN®
DIVISION OF METABOLIC AND NUTRITIONAL MEDICINE
DR. VON HAUNER CHILDREN’S HOSPITAL
EARLY PROTEIN HYPOTHESIS

Protein Intake → Metabolomics → Insulin, IGF1 levels

Metabolomics → Insulinogenic amino acids

Metabolomics → Changes in energetic efficiency

Weight gain 0-24 month → Metabolomics → Changes in fat oxidation - acylcarnitines

Metabolomics → Changes in lipid profile - phospholipids

Adipogenic activity → Later obesity risk

EUROPEAN CHILDHOOD OBESITY PROJECT

Intervention groups
- Lower protein formula (LP)
- Higher protein formula (HP)

Observational group
- Breastfed (BF)

Randomization
- Blood sampling at 6 month of age

- 263
- 265
- 163

Reference:
Influence of Early Nutrition on Metabolic processes – Christian Hellmuth

CHOP – WEIGHT GAIN

EARLY PROTEIN HYPOTHESIS

Higher Protein Intake ✔

Elevated Insulin, IGF1 levels ✔

Increased weight gain 0-24 month ✔

EUROPEAN CHILDHOOD OBESITY PROJECT

- Amino acids determined by LC-MS/MS\(^1\)
- Polar lipids and glucose analysis by FIA-MS/MS\(^2\)

- 21 Amino acids (AA)
- 41 Acylcarnitines (Carn.a)
- 14 Sphingomyelins (SM)
- 76 Phosphatidylcholins (PC)
- 15 Lysosphatidylcholins (LPC)

\(^1\) Harder, Peissner et al. J Chromatogr B. 2011 Mar 1;879(7-8):495-504.
\(^2\) Absolute IDQ p 150 kit
Influence of Early Nutrition on Metabolic processes – Christian Hellmuth

CHOP – HP vs. LP

Branched-chain amino acids

<table>
<thead>
<tr>
<th>log$_{10}$(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Mean LP < Mean HP

Mean LP > Mean HP

- Essential AA
- BCAA
- Nonessential AA
- Free Carnitine
- Short Acylcarne
- Medium Acylcarne
- Long Acylcarne
BRANCHED-CHAIN AMINO ACIDS (BCAA)

- Leucine, Isoleucine, Valine
- Elevated in HP group
- Dietary BCAA escape first-pass liver metabolism
- Oxidized in skeletal muscle
FIRST PASS METABOLISM

Dietary protein

Amino acids
20% BCAA

GIT

Portal vein

Liver

Amino acid metabolism

Systemic circulation

Skeletal muscle

BCAA Oxidation

Amino acids > 50% BCAA

BRANCHED-CHAIN AMINO ACIDS (BCAA)

- Leucine, Isoleucine, Valine
- Elevated in HP group
- Dietary BCAA escape first-pass liver metabolism
- Oxidized in skeletal muscle
BCAA OXIDATION

Influence of Early Nutrition on Metabolic processes – Christian Hellmuth

CHOP – LP VS. HP

Branched-chain amino acids

Short-chain acylcarnitines

Mean LP < Mean HP

Mean LP > Mean HP
Influence of Early Nutrition on Metabolic processes – Christian Hellmuth

BCAA OXIDATION

Valine
\[\text{Val} \rightarrow 5.0.\text{oxo} \]

Leucine
\[\text{Leu} \rightarrow 6.0.\text{oxo} \]

Isoleucine
\[\text{Ile} \rightarrow 6.0.\text{oxo} \]

BCKD

Rate limiting

4.0

4.1

4.0.\text{OH}

4.0.\text{oxo}

NAD\(^+\)

3.0

NADH/H\(^+\)

5.0

5.1

5.0.\text{OH}

5.0.\text{oxo}

3.0 2.0

Non-hepatic

BCKD

Adipose Tissue

Heart

Intestine

Kidney

Liver

Skeletal Muscle

Brain

KLINIKUM DER UNIVERSITÄT MÜNCHEN®
DIVISION OF METABOLIC AND NUTRITIONAL MEDICINE
DR. VON HAUNER CHILDREN’S HOSPITAL
LEUCINE OXIDATION

- Physiological level - linear stimulation of degradation pathway
 - Regulation of BCAA level
- Excess BCAA ➔ BCAA exceed degradation pathway
BCAA EFFECTS

- Hydrophobic substrates for proteins\(^1\)
- Stimulation of insulin secretion\(^2\)
- Inhibition of glucagon secretion\(^2\)
- Reducing protein breakdown\(^2\)
- Enhancing protein synthesis (mTOR)\(^3\)
- Brain-uptake of glutamate\(^1\)

1 Brosnan, Brosnan J Nutr. 2006 Jan;136(1 Suppl):207S-11S
IMPACT OF BCAA ON FAT METABOLISM

- Leucine slows-down beta-oxidation\(^1,2\)
- Leucine decreases lipolysis\(^2\)
- Leucine increases lipogenesis\(^2\)

- Leucine, Isoleucin and Valin deprivation reduce fat mass\(^3\)

BETA-OXIDATION

<table>
<thead>
<tr>
<th>log₁₀(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean LP < Mean HP</td>
</tr>
<tr>
<td>Carn C3</td>
</tr>
<tr>
<td>Carn C5</td>
</tr>
<tr>
<td>Carn C4</td>
</tr>
<tr>
<td>Val</td>
</tr>
<tr>
<td>Leu</td>
</tr>
<tr>
<td>Ile</td>
</tr>
<tr>
<td>Lys</td>
</tr>
<tr>
<td>Phe</td>
</tr>
<tr>
<td>Trp</td>
</tr>
<tr>
<td>Met</td>
</tr>
<tr>
<td>Thr</td>
</tr>
<tr>
<td>His</td>
</tr>
<tr>
<td>Arg</td>
</tr>
<tr>
<td>Gly</td>
</tr>
<tr>
<td>Gln</td>
</tr>
<tr>
<td>Carn C5-Myoinositol</td>
</tr>
<tr>
<td>Carn C5:1</td>
</tr>
<tr>
<td>Carn C7-DC</td>
</tr>
<tr>
<td>Carn C8:1</td>
</tr>
<tr>
<td>Carn C9:1</td>
</tr>
<tr>
<td>Carn C10</td>
</tr>
<tr>
<td>Carn C11</td>
</tr>
<tr>
<td>Carn C12</td>
</tr>
<tr>
<td>Carn C13</td>
</tr>
<tr>
<td>Carn C14</td>
</tr>
<tr>
<td>Carn C15</td>
</tr>
<tr>
<td>Carn C16</td>
</tr>
<tr>
<td>Carn C17</td>
</tr>
<tr>
<td>Carn C18</td>
</tr>
<tr>
<td>Carn C18:1</td>
</tr>
</tbody>
</table>

Even-chain acylcarnitines

Key:
- Essential AA
- BCAA
- Nonessential AA
- Free Carnitine
- Short Acylcarne
- Medium Acylcarne
- Long Acylcarne

Influence of Early Nutrition on Metabolic processes – Christian Hellmuth
EARLY PROTEIN HYPOTHESIS

Protein Intake ✔

Elevation of insulinogenic amino acids (BCAA) ✔

Insulin, IGF1 levels ✔

Reduction of beta-oxidation substrates (long-chain acylcarnitines) ✔

Weight gain 0-24 month ✔

Adipogenic activity

TAKE HOME MESSAGE

- Metabolomics provides insights into pathways and metabolic changes
- Higher Protein intake results especially in elevated BCAA levels
- Excess BCAA levels overcome BCAA degradation
- BCAA may effect beta-oxidation and fat storage
- Reduced long-chain acylcarnitines reflect reduced beta-oxidation
THANK YOU FOR YOUR ATTENTION

This project receives funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement nº 289346

www.project-earlynutrition.eu