Note: for non-commercial purposes only

HelmholtzZentrum münchen

German Research Center for Environmental Health

Fatty acid composition in blood and obesity in childhood

Marie Standl

Helmholtz Zentrum München Institute of Epidemiology I

Background

Genetic and environmental factors

Fatty acids

- No changes in total amount of fat, but altered fatty acid composition ²
- Especially elevated ratio of n-6/n-3 polyunsaturated fatty acids (PUFA)
 (n-6/n-3: up to 15:1 or 20:1) ³

Childhood obesity

A global major public health challenge:

- prevalence is increasing ¹
- risk factor for obesity and obesity related diseases in adulthood ¹

2 Ailhaud & Guesnet (2004) *obesity reviews* 3 Simopoulos (2002) *Biomed Pharmacother*

Fatty acid metabolism

Glaser et al. (2010) Metabolism Ailhaud et al. (2008) British Journal of Nutrition

Development of adipose tissue

- Adipose tissue development starts at 14th week of gestation and increases exponentially with gestational age.
- Postnatally, the increase in the number and size of adipocytes is high during the first year of life.
- Differentiation of precursor cells into adipocytes also continues later in life.

Prenatal and early postnatal life are critical periods for adipose tissue development

Hypothesis

High concentrations of n-3 long-chain (LC-) PUFA, low concentrations of n-6 LC-PUFA and a low n-6/n-3 ratio in early life are associated with a lower risk for obesity later in life.

Studies on fatty acids in early life and growth

Interventional

Study	Year	Sample Size
Andersen	2011	n=133
Bergmann	2007 2012	n=144
Courville	2011	n=47
Escolano-Margarit Campoy	2011 2011	n=154
Hauner Much	2012 2013	n=205
Helland	2008	n = 143
Lauritzen Asserhøy	2005 2009	n=122
Rosenfeld (MA*)	2009	n = 901
Rytter	2011	n=243

Observational

Study	Year	Sample Size
Donahue	2011	n=302 n=227
Moon	2013	n=293
Standl	2014	n=388

No effect **Interventional studies** Higher in intervention group Lower in intervention group In line with hypothesis ø BMI, length, 1.6q Andersen EPA+DHA weight, HC, SF 200mg BMI, Ø BMI. Bergmann DHA weight weight 300mg Courville DHA Escolano-Margarit 650mg ø BMI ø BMI DHA+EPA Campoy Hauner ø SF, body 1.2g DHA and AA reduction fat, growth Much ø BMI Helland 2g DHA+EPA Lauritzen 1.4q + BMI ø BMI EPA+DHA Asserhøy Formula ø BMI, length, Rosenfeld (MA) milk weight, HC Ø BMI. 2.7g n-3 Rytter WC

HelmholtzZentrum münchen

German Research Center for Environmental Health

15th wk

gestation

LC-PUFA

Birth

HC: head circumference; SF: skinfold thicknesses;

2.5y

4y 5y 6y 7y

PI: ponderal indices; MA: Meta-Analysis;

18m 21m

WC: waist circumference

12m

19

years

Interventional studies: BMI effect size

Andersen

Bergmann

Courville

Escolano-Margarit Campoy

Hauner

Helland

Lauritzen Asserhøy

Rosenfeld (MA)

Rytter

Interventional studies: BMI effect size

	Age	Outcome	Intervention	Control
Hauner	12m	ВМІ	16.9 (1.5)	16.7 (1.4)
Andersen	18m	BMI z-score	0.75 (0.13)	0.70 (0.10)
Rosenfeld (MA)	18m	ВМІ	16.3 (1.4)	16.3 (1.4)
Bergmann	21m	BMI	14.7 (0.36)	15.5 (0.38)
Lauritzen	2.5y	BMI	16.5 (1.1)	15.9 (1.2)
Escolano-Margarit	4 y	BMI	16.6 (2.1)	15.8 (1.1)
Bergmann	6у	BMI z-score	1.03 (0.10)	1.02 (0.09)
Campoy	6.5y	ВМІ	17.2 (2.9)	16.8 (2.3)
Helland	7 y	ВМІ	16.4 (1.7)	16.3 (1.7)
Asserhøy	7 y	ВМІ	16.0 (1.6)	15.7 (1.5)
Rytter	19y	ВМІ	22.5 (3.5)	22.6 (3.8)

Observational studies

CB: cord blood; SF: skinfold thicknesses; zBMI: BMI z-score

Marker of prenatal fatty acid exposure

Observational studies

HelmholtzZentrum münchen
German Research Center for Environmental Health

CB: cord blood; SF: skinfold thicknesses; zBMI: BMI z-score

Summary & Outlook I/II

Interventional studies

- Birth 2.5 years: Conflicting results
 - 3 studies: no effect
 - 2 studies: lower weight in intervention group (hypothesis
 - 1 study: higher weight in intervention group
- 4 7 years: no effect (4 studies)
- 19 years: no effect (1 study)

Observational studies

- 2 studies: in line with hypothesis
- 1 study: time varying effect

Summary & Outlook II/II

- Further interventional studies needed to clarify effect of LC-PUFAs early in life on later weight development
 - Adequate sample size
 - Clarify timing, duration and quantity of intervention
 - Long duration of follow-up to investigate persistence of effect
 - Detailed and repeated measurements of body composition
- Other effect modifying factors?
 - Life-style (diet, physical activity)
 - Include FADS genes

Fatty acid metabolism

Summary & Outlook II/II

- Further interventional studies needed to clarify effect of LC-PUFAs early in life on later weight development
 - Adequate sample size
 - Clarify timing, duration and quantity of intervention
 - Long duration of follow-up to investigate persistence of effect
 - Detailed and repeated measurements of body composition
- Other effect modifying factors?
 - Life-style (diet, physical activity)
 - Include FADS genes

Results on fatty acids and obesity are inconclusive

Acknowledgements

University of Munich Medical Centre Dr von Hauner Children's Hospital

Prof. Dr. Berthold Koletzko

Dr. Hans Demmelmair

Helmholtz Zentrum München

Dr. Joachim Heinrich

Dr. Eva Reischl

